
1 | P a g e  
 

Emergence of Quantum Mechanics from Iterated Maps 

Ervin Goldfain 

Abstract 

Iterated maps are deterministic models of dynamical systems in discrete time. A key feature of these models 

is the concept of invariant density associated with the asymptotic onset of stationarity. Drawing from the 

minimal fractality of spacetime near the Fermi scale, we show here that invariant density enables a step-

by-step derivation of Quantum Mechanics from iterated maps. 
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1. Iterated maps and invariant density functions  

Refs. [3-9] discuss at length the physical meaning of the minimal fractal manifold 

(MFM), a spacetime continuum characterized by arbitrarily small and scale-dependent 

deviations from four dimensions ( 4 1D    ). MFM is conjectured to develop in out-

of-equilibrium conditions near the ultraviolet scale UV  and flow towards equilibrium 

below the Fermi scale ( EW UVM   ). The main point of the MFM is that the dimensional 

deviation   runs with the energy scale as in ( )   , where )( EW UVO M   . There 

are reasons to believe that dimensional fluctuations driven by ( )   near the limit of four-

dimensional spacetime ( 0  ) are asymptotically compatible with the phenomenology of 

effective field theory, in general, and the Standard Model of particle physics in particular 

[3-9].  
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The goal of this paragraph is to outline the description of ( )   in terms of iterated maps 

and invariant density functions. It complements our earlier work on the emergence of 

Planck’s constant from iterated maps [10]. 

The evolution of ( )   in a generic N dimensional phase space X  is defined by the first-

order differential equation [1-2] 

 ( )
d

d


 


   (1) 

whose map analog is given by 

  1n n      (2) 

Here, n  is the map iteration index while 

 (1) (2) ( )( , ,..., )N

n n n n      (3) 

is a vector in X  and 

 (1) (2 ) ( )( , ,..., )N      (4) 

a vector-valued function. One starts with 0  and iterate it step by step using (2). The 

sequence of iterates 0 1, ,...   forms a trajectory (orbit) in X . A periodic orbit of length 

1L   defines a fixed point of the map and satisfies the condition 

 ( ) 0 4D         (5) 

 ( ) ( (... ( )))L       ,   L   times (6) 
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Although the iterates of (2) are deterministic events, a useful concept for the analysis of 

(2) is the probability distribution of iterates. Let us partition X  into an array of  disjoint 

cells indexed by the subscript 1,2,...,i R , where R  is the total number of cells. Let the 

number of iterates located in cell i  be in . The relative frequencies (or weights) associated 

with a large number of iterations 1n   is given by 

 i i
i

ii

n n
p

n n
 


  (7) 

Definition (7) enables bridging the gap between the theory of iterated maps and classical 

statistical physics [1-2].   

Assuming unbounded precision, the numerical value of   includes an infinite string of 

digits. A reasonable approximation is obtained by truncating the string to 1M   digits 

according to 

 1 2 1... M M       (8) 

where each unit , 1,2,...,j j M   is the quartet of binary pairs as in 

  00, 01, 10, 11j    (9) 

The probability measure associated with the initial density 0( )   assumes the form 

 0 0( ) ( )
A

A d       (10) 

It is important to note that, unlike statistical physics, the initial density 0( )   does not 

reflect the statistical uncertainty of choosing an initial condition. Rather, the initial 



4 | P a g e  
 

density follows from the inherent numerical approximation of   as expressed by (8) and 

(9).  In general, one can state that the density ( )   at any iteration stage quantifies the 

rounding error in the estimation of  , a process that can be symbolically presented as 

 ( )    ≈ 1 2, ,..., T    ,  T M   (11) 

Given the map  , one wishes to study the evolution of the ensemble of trajectories 

corresponding to an ensemble of initial values 0 . Let n  denote the probability 

distribution of iterates after n  iterations. The probability measure of finding an iterate 
n  

in the subset of the phase space A X  amounts to [1] 

 ( ) ( )n n
A

A d      (12) 

By definition, an invariant probability measure stays unchanged upon the action of the 

map  , which means that it satisfies the requirement      

 1( ) ( )n nA A     (13) 

It can be shown that, based on (12) to (13), the corresponding invariant density   

complies with the condition 

 
1( )

( ) ( )
A A
d d


     


    (14) 

where 1( )   denotes the set of all points that are mapped onto A  by one iteration step.  

The ensemble expectation value of an arbitrary test function (or operator) ( )Q   with 

respect to the invariant density   is given by [1]  
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 ( ) ( )
X

Q d Q      (15) 

Ergodicity demands the identity of the ensemble average with the time average, where 

the latter is supplied by 

 
1

0

1
lim ( )

N

nnn
Q Q Q Q

n





     (16) 

A remarkable property of ergodic maps is mixing.  The map   is called “mixing” if the 

initial smooth density 
0 ( )   converges to the invariant density ( )   as in  [1] 

 lim ( ) ( )n
n

   


   (17) 

It is apparent that (17) is automatically fulfilled if the map (2) ends up on the attractor 

0 ( 4)D   , where the dimensional flow ( )    settles down.  

Mixing may be also defined in terms of correlation functions (CF). The CF for any two 

integrable test functions 1 2,   takes the form 

 
1

1 2 1 2 1 20

1
( , ; ) lim ( ) ( )

K

k n kkK
C n

K
       




    (18) 

The map is considered mixing if 

 1 2lim ( , ; ) 0
n

C n 


   (19) 

which occurs when 1  and 2  are statistically independent. Mixing implies ergodicity, 

but the reverse is not true. 
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2. Quantum Mechanics from invariant density functions 

The behavior of iterated maps previously outlined hints to an unforeseen connection 

between the invariant density ( )   in close proximity to 0    and the probability 

density of quantum states. In particular, a straightforward conjecture is that  

 
2

( ) ( )x     (20) 

where ( )x  is the square-integrable wavefunction of Quantum Mechanics (QM). To 

unveil this connection, we cast the invariant density in the form 

 
2

( ) ( ) ( ) ( ) exp[ ( )]C C i             (21) 

where ( ) ( )exp[ ( )]C i       represents the complex-valued amplitude of ( )  . 

Relations (20) and (21) imply a straightforward one-to-one correspondence written as 

 ( ) ( )C x     (22a) 

 ( ) ( )C x      (22b) 

A critical observation is now in order. Recall that, by (11), the density ( )   reflects the 

rounding error in the estimation of  . In addition to the rounding error, one must 

consider that any measurement process involves a finite sampling resolution  . For a 

given  , there is an infinite number of rounded   contained in   and an invariant 

density ( )   that can symbolically presented as  

 min max( ) [ , ]           (23) 
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It follows from these considerations that (22) is to be interpreted as an infinite 

superposition of complex amplitudes imposed by  , as embodied in the expansion 

postulate of QM 

 
s ss

C    (24) 

Turning next to (15), it is apparent that it represents the analogue of operator average in 

QM, namely 

 ( ) ( )Q dx x Q x     (25) 

A surprising interpretation emerges from (18) - (19). For any arbitrarily small yet non-

vanishing deviation 0    , the correlation function of two operators 
1 2,Q Q  is never 

vanishing, which – under properly defined conditions - may lie behind the physics of 

quantum entanglement. This is to say that there are circumstances where quantum 

operators remain statistical dependent, regardless of the observation scale   . 

We close by showing how the quantum generators of translations and rotations, as well 

as the time-dependent Schrödinger equation, emerge from (20) – (22). To this end, 

consider a scaling transformation of (22) written in the form 

 ' U    (26) 

Since (20) is scale-invariant for 0    , the operator U  must be unitary    

 † 1U U    (27) 

which means 
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 †' ' U U           (28) 

 Transformation (26) is therefore norm-conserving 

 
1

† 2' ( )       (29) 

The infinitesimal counterpart of (26) is described by ( 1  ) 

 exp( ) exp( )U i i G    ≈ 1 i G   (30) 

or 

 ' (1 )i G      (31) 

where G  stands for the generator of (26). It was shown in [11] that an infinitesimal 

transformation involving a dilation, rotation or translation is operationally equivalent to 

an infinitesimal scale-invariant (self-similar) transformation. Assuming that (26) refers 

to a translation ( 'x x x  ) with x x  , (31) turns into   

 '( ') ( )x x x    ≈ 
( )

( )
x

x x
x


 





 ,   ( )x x   (32) 

which yields the generator of translations in the form  

 G i
x






 


  (33) 

Including the reduced Planck’s constant in (33) leads to the standard momentum 

operator  
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 P G    (34) 

Consider now rotations about the z - axis which transform vectors ( , )x yV VV  according 

to the matrix equation 

 
cos sin

sin cos

x x

yy

VV

VV

 

 

     
         

  (35) 

An infinitesimal rotation of angle 1    is equivalent to an infinitesimal scaling 

operation defined by  

 
1

1

x x x y

y y xy

V V VV

V V VV





       
              

      (36) 

and so 

 x y yV V V        (37) 

 y x xV V V      (38) 

It is known that expanding a generic function containing a two-component vector gives 

 ( , ) ( , )x x y y x y x y

x y

F F
F V V V V F V V V V

V V
   

 
    

 
  (39) 

which can be presented as 

 ( ) ( ) ( )y x

x y

F F V V
V V

   
 

    
 

  (40) 
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It follows from (40) that the generator of planar rotations can be written as  

 ( )x y

y x

G i V V
V V

 
  

 
  (41) 

When V  represents the position vector ( , )x yr , (41) renders the angular momentum 

about the z  axis in the familiar form   

 z y xL x P y P    (1.1) 

Finally, let us apply an infinitesimal time translation 't t t   in (26) given by 

 '( ') ( ) (1 ) ( )
i

t U t H t t        (42) 

where 

 '( ') ( )t t t
t


  


 


  (43) 

Inspection of (42) and (43) reveals the time-dependent Schrödinger equation 

 H i
t








  (44) 

For additional details on (26) – (44), the reader is directed to a couple of well-written 

introductory texts on the role of symmetry and invariance in physics [12-13].  
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